All content on this site is intended for healthcare professionals only. By acknowledging this message and accessing the information on this website you are confirming that you are a Healthcare Professional. If you are a patient or carer, please visit Know AML.

The AML Hub uses cookies on this website. They help us give you the best online experience. By continuing to use our website without changing your cookie settings, you agree to our use of cookies in accordance with our updated Cookie Policy

Introducing

Now you can personalise
your AML Hub experience!

Bookmark content to read later

Select your specific areas of interest

View content recommended for you

Find out more
  TRANSLATE

The AML Hub website uses a third-party service provided by Google that dynamically translates web content. Translations are machine generated, so may not be an exact or complete translation, and the AML Hub cannot guarantee the accuracy of translated content. The AML Hub and its employees will not be liable for any direct, indirect, or consequential damages (even if foreseeable) resulting from use of the Google Translate feature. For further support with Google Translate, visit Google Translate Help.

Steering CommitteeAbout UsNewsletterContact
LOADING
You're logged in! Click here any time to manage your account or log out.
LOADING
You're logged in! Click here any time to manage your account or log out.
2020-03-11T14:17:22.000Z

The benefit of gemtuzumab ozogamicin in patients with AML depends on mutational status and level of CD33 expression

Mar 11, 2020
Share:

Bookmark this article

Acute myeloid leukemia (AML) is a complex heterogeneous disease. In the last decade, increased understanding of treatment interactions with cytogenetic and molecular aberrations in AML have enabled the stratification of patients according to predicted response to chemotherapy.1 New drugs against specific aberrations are being developed and approved, changing the AML treatment landscape. However, the predictive value of a patient’s genetic background and the interaction with new therapies remains to be assessed. Incorporation of this information into decision making on the optimal treatment regimen that would target antigens and pathways specific for each disease subtype is being evaluated.

Elsie Fournier and Nicolas Duployez et al. recently published a paper on this topic in Blood. In a retrospective study, the authors evaluated whether molecular events could predict the benefit of adding gemtuzumab ozogamicin (GO) to standard frontline chemotherapy.2

Study design

Mutational analysis was performed on samples from 235 patients with non–core binding factor (CBF) AML. Patients came from a cohort enrolled on ALFA-0701 (NCT00927498), a phase III trial evaluating the efficacy of addition of gemtuzumab ozogamicin (GO) to standard frontline chemotherapy.3 Samples were analyzed for molecular aberrations, including FLT3-internal tandem duplication (ITD), recurrent gene rearrangements, KMT2A–partial tandem duplication, and CD33 expression. The signaling mutations were defined as the presence of at least one mutation in FLT3, NRAS, KRAS, PTPN11, JAK2, RIT1, or CBL, regardless of the variant allelic frequency (VAF). 

Main findings

Mutational profiling

  • In total, 94% of patients had at least one mutation
  • Frequently mutated genes (in ≥ 10% of patients) included
    • NPM1 (34%)
    • DNMT3A (29%)
    • FLT3 (28%)
      • FLT3-ITD (21%)
      • FLT3-TKD (8%)
    • TET2 (20%)
    • RUNX1 (16%)
    • NRAS (14%)
    • ASXL1, IDH2, and SRSF2 (13% each)
    • TP53 and IDH1 (11% each)
  • 30% of patients were classified as having favorable risk, 29% as intermediate, and 40% as adverse risk according to the European LeukemiaNet (ELN) 2017 risk classification
  • Control group and the GO group had balanced distribution of gene mutations, ELN risk categories, and CD33 expression

The benefit of GO in molecularly defined subgroups

  • There was no difference between the GO and control arms in complete remission (CR) rate, which was 71% overall
  • CR differed between ELN risk categories with no impact of GO
    • 86% in the favorable-risk group
    • 83% in the intermediate-risk group
    • 64% adverse-risk group
  • The 3-year event-free survival (EFS) was 25.7% (95% CI, 2.6–30.0)
  • Addition of GO improved outcomes in patients with favorable and intermediate risk (HR 54; 95% CI, 0.30–0.98 and HR 0.57; 95% CI, 0.33–1.00, respectively)
  • The impact of GO addition to standard chemotherapy by mutation status can be observed in Table 1
    • Patients with signaling mutations had significantly increased EFS with GO (p = 0.02; HR 0.36; 95% CI, 0.21–0.61) and a positive trend was seen in overall survival (OS; p = 0.07, HR 0.47; 95% CI, 0.26–0.83), compared to patients without signaling mutations (EFS HR 1.07; 95% CI, 0.53–2.16 and OS HR 1.11; 95% CI, 0.50–2.47)
    • Only patients with activating signaling mutations benefited from GO addition
    • There was no benefit of GO addition in patients with RUNX1, TP53, or ASXL1 mutations
  • Addition of GO improved EFS for patients independent of VAF for signaling mutations or allelic FLT3-ITD ratio

Table 1. Impact of GO addition to standard chemotherapy by mutation status

 

HR (95% CI)

Mutated gene

NPM1

0.48 (0.28–0.83)

FLT3

FLT3-ITD

FLT3-TKD

 

0.36 (0.18–0.72)

0.20 (0.05–0.78)

NRAS

0.43 (0.19–0.95)

KRAS

0.27 (0.09–0.84)

SRSF2

0.28 (0.12–0.65)

IDH2

0.43 (0.16–1.17)

ASXL1

1.57 (0.68–3.58)

Mutation type

Activating signaling

0.43 (0.28–0.65)

Epigenetic

0.68 (0.48–0.97)

Spliceosome deregulation

0.44 (0.24–0.80)

Correlation between the benefit of GO and CD33 expression

  • Increased benefit in EFS after addition of GO was correlated with CD33 expression levels among the different mutations, especially with signaling mutations (Pearson correlation coefficient, −0.67)
  • In patients with epigenetic mutations, those with signaling mutations had significantly higher levels of CD33 expression compared to those without (98% vs 60%; p = 0.001)

Conclusion

The authors of the original article demonstrated that the benefit of GO in AML depends on underlying molecular abnormalities. The findings from the ALFA-0701 suggest that the addition of GO to standard chemotherapy predominantly improves outcomes for patients with signaling mutations coupled with high CD33 expression.3 Therefore, this retrospective study reiterates that treatments, even with novel therapies, should be tailored based on patient genetic profile. The drug was approved for the use in previously untreated AML patients by FDA and EMA without limiting its use to any specific genetic subtypes. The NICE recommendation is also for a whole population of patients with untreated AML.

  1. Döhner H. et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017 Jan 26; 129(4):424–447. DOI: 10.1182/blood-2016-08-733196
  2. Fournier E., Duployez N. et al. Mutational profile and benefit of gemtuzumab ozogamicin in acute myeloid leukemia. Blood. 2020 Feb 20; 135(8):542–546. DOI: 10.1182/blood.2019003471
  3. Castaigne S. et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet. 2012 Apr 21; 379(9825):1508–16. DOI: 10.1016/S0140-6736(12)60485-1

Your opinion matters

Do you intend to implement next-generation sequencing for measurable residual disease monitoring in MDS patients?
1 vote - 5 days left ...

Newsletter

Subscribe to get the best content related to AML delivered to your inbox