All content on this site is intended for healthcare professionals only. By acknowledging this message and accessing the information on this website you are confirming that you are a Healthcare Professional. If you are a patient or carer, please visit Know AML.

The AML Hub uses cookies on this website. They help us give you the best online experience. By continuing to use our website without changing your cookie settings, you agree to our use of cookies in accordance with our updated Cookie Policy

Introducing

Now you can personalise
your AML Hub experience!

Bookmark content to read later

Select your specific areas of interest

View content recommended for you

Find out more
  TRANSLATE

The AML Hub website uses a third-party service provided by Google that dynamically translates web content. Translations are machine generated, so may not be an exact or complete translation, and the AML Hub cannot guarantee the accuracy of translated content. The AML Hub and its employees will not be liable for any direct, indirect, or consequential damages (even if foreseeable) resulting from use of the Google Translate feature. For further support with Google Translate, visit Google Translate Help.

Steering CommitteeAbout UsNewsletterContact
LOADING
You're logged in! Click here any time to manage your account or log out.
LOADING
You're logged in! Click here any time to manage your account or log out.

The AML Hub is an independent medical education platform, sponsored by Daiichi Sankyo, Jazz Pharmaceuticals, Johnson & Johnson, Kura Oncology, Roche, Syndax and Thermo Fisher, and has been supported through a grant from Bristol Myers Squibb. The funders are allowed no direct influence on our content. The levels of sponsorship listed are reflective of the amount of funding given. View funders.

2016-11-17T20:47:46.000Z

Targeting the cellular metabolic processes in Acute Myeloid Leukemia: A promising novel approach in cancer treatment

Nov 17, 2016
Share:

Bookmark this article

In order for cancer cells to grow and proliferate, cellular metabolic reprogramming must occur. The non-essential amino acid glutamine (Gln) has been implicated in facilitating this process. Consequently, the inhibition of this amino acid provides a clear target for cancer therapy. Furthermore, P. Matre et al. state that the targeting of metabolic processes has emerged as a novel, promising approach in cancer treatment.

Matre et al. from the University of Texas MD Anderson Cancer Center, Houston, TX, USA, investigated the role of the Gln utilization pathway in Acute Myeloid Leukemia (AML) cell lines and primary AML samples. Furthermore, this study involved determining the anti-AML efficacy of a novel orally bioavailable Glutaminase (GLS) inhibitor CB-839. The study was published in Oncotarget in October 2016.

Their key findings demonstrated the following:

  • A subset of AML cell lines and primary AML cells were sensitive to Gln deprivation and to inhibition of GLS.
  • Gln deprivation in cell lines resulted in (>60%) decreases in viable cell numbers and induced apoptosis.
  • CB-839 induced metabolic changes in IDH1/2 mutant AML patient samples.
  • CB-839 induced myeloid differentiation.

In summary, the authors reported that, despite the exploratory nature of this study, the results provide a rationale for the targeting of Gln metabolism with GLS inhibitors in AML treatment. This study is particularly promising as the novel agent demonstrated activity against IDH1 mutations which are driver mutations in AML.   These results also provide a potential novel therapeutic approach where combination therapy with standard and targeted agents could be employed.

 

Abstract

Metabolic reprogramming has been described as a hallmark of transformed cancer cells. In this study, we examined the role of the glutamine (Gln) utilization pathway in acute myeloid leukemia (AML) cell lines and primary AML samples. Our results indicate that a subset of AML cell lines is sensitive to Gln deprivation. Glutaminase (GLS) is a mitochondrial enzyme that catalyzes the conversion of Gln to glutamate. One of the two GLS isoenzymes, GLS1 is highly expressed in cancer and encodes two different isoforms: kidney (KGA) and glutaminase C (GAC). We analyzed mRNA expression of GLS1 splicing variants, GAC and KGA, in several large AML datasets and identified increased levels of expression in AML patients with complex cytogenetics and within specific molecular subsets. Inhibition of glutaminase by allosteric GLS inhibitor bis-2-(5-phenylacetamido-1, 2, 4-thiadiazol2-yl) ethyl sulfide or by novel, potent, orally bioavailable GLS inhibitor CB-839 reduced intracellular glutamate levels and inhibited growth of AML cells. In cell lines and patient samples harboring IDH1/IDH2 (Isocitrate dehydrogenase 1 and 2) mutations, CB-839 reduced production of oncometabolite 2-hydroxyglutarate, inducing differentiation. These findings indicate potential utility of glutaminase inhibitors in AML therapy, which can inhibit cell growth, induce apoptosis and/or differentiation in specific leukemia subtypes.

  1. Matre P. et al. Inhibiting glutaminase in acute myeloid leukemia: metabolic dependency of selected AML subtypes. Oncotarget. 2016 Oct 27. OI: 10.18632/oncotarget.12944. [Epub ahead of print].

Your opinion matters

HCPs, what is your preferred format for educational content on the AML Hub?
39 votes - 16 days left ...

Newsletter

Subscribe to get the best content related to AML delivered to your inbox