All content on this site is intended for healthcare professionals only. By acknowledging this message and accessing the information on this website you are confirming that you are a Healthcare Professional. If you are a patient or carer, please visit Know AML.

  TRANSLATE

The aml Hub website uses a third-party service provided by Google that dynamically translates web content. Translations are machine generated, so may not be an exact or complete translation, and the aml Hub cannot guarantee the accuracy of translated content. The aml and its employees will not be liable for any direct, indirect, or consequential damages (even if foreseeable) resulting from use of the Google Translate feature. For further support with Google Translate, visit Google Translate Help.

The AML Hub is an independent medical education platform, sponsored by Daiichi Sankyo, Johnson & Johnson, and Syndax, and has been supported through an educational grant from the Hippocrate Conference Institute, an association of the Servier Group. The funders are allowed no direct influence on our content. The levels of sponsorship listed are reflective of the amount of funding given.  View funders.

Now you can support HCPs in making informed decisions for their patients

Your contribution helps us continuously deliver expertly curated content to HCPs worldwide. You will also have the opportunity to make a content suggestion for consideration and receive updates on the impact contributions are making to our content.

Find out more

Cytoprotective autophagy maintains leukemia-initiating cells in murine myeloid leukemia

By Cynthia Umukoro

Share:

Sep 29, 2016


Autophagy is an important self-degradative process involved in responding to stress and homeostasis. This process has implications in the development of hematological malignancies such as Acute Myeloid Leukemia (AML). Consequently, further understanding of the control of autophagy could lead to improved clinical outcomes for patients with AML.

Sumitomo, et al., of the Graduate School of Medicine, Japan, investigated the role of autophagy in AML maintenance and drug resistance in knockout mice of Atg5 or Atg7 with mixed linkage leukemia. The key findings of their study identified new potential therapeutic methods of optimizing AraC chemotherapy. Furthermore, by elucidating the functional role of autophagy in AML, the authors have provided further insights into the progression of the disease. Their results were published in Blood in July 2016. Please find the abstract of the study below.

Abstract

Despite advances in the treatment of acute myeloid leukemia (AML), relapse and drug resistance frequently occur. Therefore, detailed mechanisms of refractoriness, including leukemia-initiating cell (LIC) biology, should be elucidated to treat AML. The self-degradative property of cytosolic macromolecules is central to autophagy and can contribute to homeostasis and stress response. Recent reports suggest the importance of autophagy in hematopoietic stem cells and various tumors. Thus, this study investigated the functional role of autophagy in AML maintenance and drug resistance using tamoxifen-inducible conditional knockout mice of Atg5 or Atg7, which are essential genes for autophagy, combined with an mixed lineage leukemia–eleven nineteen leukemia–induced murine AML model. Inactivation of autophagy by deletion of Atg5 or Atg7 prolonged survival in leukemic mice and reduced functional LICs. Atg7-deficient LICs displayed enhanced mitochondrial activity and reactive oxygen species production together with increased cell death. In addition, Atg7 deletion markedly decreased peripheral blood leukemia cells, concurrent with increased apoptosis, suggesting a higher dependency on autophagy compared with bone marrow leukemia cells. Finally, cytarabine (AraC) treatment activated autophagy in LICs, and Atg7 deletion potentiated the therapeutic effects of AraC, which included decreased LICs and prolonged survival, suggesting that autophagy contributes to AraC resistance. Our results highlight the intratumoral heterogeneity related to autophagy in AML and the unique role of autophagy in leukemia development and drug resistance.

References

More about...

Your opinion matters

What barriers do you encounter when conducting multiple MRD tests during treatment?