The aml Hub website uses a third-party service provided by Google that dynamically translates web content. Translations are machine generated, so may not be an exact or complete translation, and the aml Hub cannot guarantee the accuracy of translated content. The aml and its employees will not be liable for any direct, indirect, or consequential damages (even if foreseeable) resulting from use of the Google Translate feature. For further support with Google Translate, visit Google Translate Help.
The AML Hub is an independent medical education platform, sponsored by Astellas, Daiichi Sankyo, Johnson & Johnson, Kura Oncology and Syndax, and has been supported through educational grants from Bristol Myers Squibb and the Hippocrate Conference Institute, an association of the Servier Group. The funders are allowed no direct influence on our content. The levels of sponsorship listed are reflective of the amount of funding given. View funders.
Now you can support HCPs in making informed decisions for their patients
Your contribution helps us continuously deliver expertly curated content to HCPs worldwide. You will also have the opportunity to make a content suggestion for consideration and receive updates on the impact contributions are making to our content.
Find out moreCreate an account and access these new features:
Bookmark content to read later
Select your specific areas of interest
View aml content recommended for you
CD123-redirected Chimeric Antigen Receptor (CAR) T-cells have been shown in previous studies to exert potent anti-leukemia activities in Acute Myeloid Leukemia (AML) preclinical studies. However, it is associated with severe hematologic toxicities which can impact Hematopoietic Stem Cell Transplantation (HSCT).1 Developing an effective CAR T-cell depletion strategy after induction of leukemia remission is crucial to halt potentially life-threatening toxicities and to enable subsequent HSCT.
In an article published on 28th February 2017 in Blood, Sarah K. Tasian from the Children’s Hospital of Philadelphia and colleagues compared the efficacy of three approaches for T-cell termination after CD123-redirected T-cell-induced eradication of AML in human AML xenograft models.2
Three approaches for T-cell termination were compared including treatment with shorter-persisting mRNA-modified CD123-redirected CAR T-cells (RNA-CART123), T-cell ablation with alemtuzumab (anti-CD52 monoclonal antibody) after treatment with lentivirally-transduced CD123-redirected CAR T-cells (CART123), and treatment with CART123 co-expressing surface CD20 protein (CART123-CD20) subsequently depleted with rituximab.
In summation, in murine xenograft models of human AML, depletion of CD123-redirected CAR-T-cells with monoclonal antibodies can eliminate CAR T-cells and preserve leukemia remission. Furthermore, it was observed that RNA-CART123 has a potent anti-AML efficacy with a potential to limit hematological toxicity due to the shorter persistence in vivo. Additionally, CAR T-cell depletion enhanced the feasibility of subsequent allogenic stem cell transplantation.
The authors noted that their study had some limitations. They highlighted that the xenograft models used in their study could not predict the potential for concurrent on-target/on-tumor leukemia cytotoxicity and bystander toxicity, and also could not prove whether subsequent HSCT would be compromised by prior CAR-T cell therapy even with T-cell depletion. Furthermore, adverse effects associated with T-cell depletion were unknown.
The authors concluded by stating that their results may identify promising T-cell termination strategies that will augment efficacy of CAR T-cell therapy, particularly prior to HSCT. Based on this preclinical data, an early phase I trial (NCT02623582) is currently underway. In this study, the feasibility, safety, and efficacy of RNA-CART123 is being evaluated in patients with relapsed or refractory AML.
Others and we previously reported potent anti-leukemia efficacy of CD123-redirected chimeric antigen receptor (CAR) T-cells in preclinical human acute myeloid leukemia (AML) models at cost of severe hematologic toxicity. This observation raises concern for potential myeloablation in patients with AML treated with CD123-redirected CAR T-cells and mandates novel approaches for toxicity mitigation. We hypothesized that CAR T-cell depletion with optimal timing after AML eradication would preserve leukemia remission and allow subsequent hematopoietic stem cell transplantation. To test this hypothesis, we compared three CAR T-cell termination strategies: (1) transiently-active anti-CD123 mRNA-electroporated CART (RNA-CART123), (2) T-cell ablation with alemtuzumab after treatment with lentivirally-transduced anti-CD123-4-1BB-CD3ζ T-cells (CART123), and (3) T-cell ablation with rituximab after treatment with CD20-coexpressing CART123 (CART123-CD20). All approaches led to rapid leukemia elimination in murine xenograft models of human AML. Subsequent antibody-mediated depletion of CART123 or CART123-CD20 did not impair leukemia remission. Time-course studies demonstrated that durable leukemia remission required CAR T-cell persistence for 4 weeks prior to ablation. Upon CAR T-cell termination, we further demonstrated successful hematopoietic engraftment with a normal human donor to model allogeneic stem cell rescue. Results from these studies will facilitate development of T-cell depletion strategies to augment the feasibility of CAR T-cell therapy for patients with AML.
References
Your opinion matters
Approximately what proportion of your patients with FLT3-mutations also have NPM1 and DNMT3A co-mutations?