The aml Hub website uses a third-party service provided by Google that dynamically translates web content. Translations are machine generated, so may not be an exact or complete translation, and the aml Hub cannot guarantee the accuracy of translated content. The aml and its employees will not be liable for any direct, indirect, or consequential damages (even if foreseeable) resulting from use of the Google Translate feature. For further support with Google Translate, visit Google Translate Help.
The AML Hub is an independent medical education platform, sponsored by Astellas, Daiichi Sankyo, Johnson & Johnson, Kura Oncology and Syndax, and has been supported through educational grants from Bristol Myers Squibb and the Hippocrate Conference Institute, an association of the Servier Group. The funders are allowed no direct influence on our content. The levels of sponsorship listed are reflective of the amount of funding given. View funders.
Now you can support HCPs in making informed decisions for their patients
Your contribution helps us continuously deliver expertly curated content to HCPs worldwide. You will also have the opportunity to make a content suggestion for consideration and receive updates on the impact contributions are making to our content.
Find out moreCreate an account and access these new features:
Bookmark content to read later
Select your specific areas of interest
View aml content recommended for you
Featured:
During the late breaking abstracts (LBA) session on Tuesday 10th December 2019 at the 61st American Society of Hematology (ASH) meeting, Orlando, US, Ilaria Iacobucci, St Jude’s Children’s Research Hospital, Memphis, US, presented LBA-4. This abstract summarizes the results from a genome-wide analysis of adult patients with acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS).
Our understanding of the genetic landscape of AML and MDS has advanced significantly in recent years. For example, in AML:
However, since most analysis is conducted by characterizing only specific subtypes and using targeted DNA-sequencing, it is less likely that novel mutational patterns and gene expression clusters will be identified.
This present study, part of the 5K Project, in association with the Munich Leukemia Laboratory, set out to analyze genetic alterations in AML and MDS by integrating genomic and transcriptome data with clinico-pathologic features and clinical outcomes. Overall, the study aimed to define myeloid leukemia subtypes of diagnostic, prognostic, and therapeutic relevance.
Unpaired whole genome sequencing and transcriptome sequencing was conducted in 1,304 patient samples. A tissue bank of patient-derived xenografts was also created to enable researchers to perform preclinical therapeutic studies.
Classification of genetically different AML and MDS subtypes
This study has demonstrated that combining mutational and expression data from a large cohort of patients with AML and MDS can identify subtypes and constellations of mutations with prognostic significance. More specifically, it highlights three points:
Whilst this study confirmed some subgroups currently identified by the WHO and ELN classification system, it also identified additional genetic clusters that allow further improvement based on constellations of mutations with prognostic significance that supersede previously described classification systems.
Due to the extent of various mutations in different pathways, classification remains a challenge. However, further enhancing our understanding and refining classification will assist with improving diagnosis and therapeutic decisions in the future.
References